A Course on Programming and Problem Solving

Swapneel Sheth
Christian Murphy
Department of Computer and
Information Science
University of Pennsylvania
Philadelphia, PA, USA
swapneel@cis.upenn.edu
cdmurphy@cis.upenn.edu

ABSTRACT

At its core, Computer Science is the study of algorithmic
problem solving. Although it is necessary to teach program-
ming, data structures, computer organization, etc., students
should ultimately learn to use these things to solve problems,
understand what is good and bad about their solutions, and
share their solutions with others.

This paper describes a course that focuses on the four
steps of the problem solving process: algorithmic thinking,
implementation, analysis, and communication. This course,
based on Knuth’s popular seminar at Stanford, has been
extremely successful at the authors’ three institutions. In ad-
dition to discussing the course’s objectives and methodology,
we present sample problems, summarize the outcomes and
feedback from students, and give advice to other educators
looking to create a similar course.

Keywords

problem-based learning; open-ended problems; soft skills

1. INTRODUCTION

Although modern Computer Science curricula focus on
programming, data structures, computer organization, soft-
ware engineering, etc., we must not lose sight of the fact that
the goal of CS is to use algorithms to solve problems, and
that problem solving in CS is a collaborative activity that
involves analyzing and communicating solutions, not just
implementing them.

This paper introduces a unique course that focuses on
problem solving in CS. This course, based on Knuth’s popu-
lar seminar in the 1970’s and 80’s, has been taught at the
authors’ three institutions for over 15 years, and develops
students’ problem solving skills using techniques that they
have learned during their CS training. In the course, stu-
dents work together to use programming techniques to solve
open-ended problems from the domains of optimization, simu-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

SIGCSE ’16, March 02-05, 2016, Memphis, TN, USA
© 2016 ACM. ISBN 978-1-4503-3685-7/16/03. .. $15.00
DOL http://dx.doi.org/10.1145/2839509.2844594

Kenneth A. Ross
Department of Computer
Science
Columbia University
New York, NY, USA
kar@cs.columbia.edu

Dennis Shasha
Department of Computer
Science
New York University
New York, NY, USA
shasha@cs.nyu.edu

lation, etc. There are no “correct” answers to these problems;
rather, the focus is on the four steps of the problem solving
process: algorithmic thinking, implementation, analysis, and
communication.

This paper describes the course’s objectives and method-
ology, presents a sample problem, summarizes the outcomes
and feedback from students, and serves as a roadmap to
other educators looking to create a similar course.

2. HISTORY

Donald Knuth started teaching CS204, “A Programming
and Problem Solving Seminar,” at Stanford in 1976. This
class was designed to be taken by new CS PhD students
during their first quarter. He taught the class roughly
every two years, and transcripts of those classes can be
found as Stanford Technical Reports (e.g., [4121]). Video
of the 1985 class can be found at http://scpd.stanford.edu/
free-stuff/engineering-archives/donald-e-knuth-lectures| un-
der the heading “Aha Sessions.”

In the preface for the 1976 class report [4], Knuth states,

The purpose of CS 204 is to teach skills needed
for research in computer science, as well as pro-
gramming skills. I assigned five programming
problems drawn from different areas of computer
science; none of these problems was easy, but they
were all intended to be sufficiently enjoyable that
the students would not mind working overtime.

The main features of the class were to:

e Work on open-ended problems.

e Work on several different types of problems.

e Use programming as a way to gain knowledge about a
problem (and potentially solve it).

e Have fun working on challenging problems.

e Work in small groups.

e Openly discuss approaches with students doing most
of the talking; the instructor serves primarily as mod-
erator.

e Collaborate (building on one another’s ideas as the class
progresses through a problem) rather than compete
(keeping one’s ideas private until the end).

In 1999, the third author, who had the privilege of being
Knuth’s teaching assistant at Stanford, created a new course
at Columbia University based on the Stanford model. The

http://dx.doi.org/10.1145/2839509.2844594
http://scpd.stanford.edu/free-stuff/engineering-archives/donald-e-knuth-lectures
http://scpd.stanford.edu/free-stuff/engineering-archives/donald-e-knuth-lectures

course was aimed at both undergraduate and graduate stu-
dents and was called “Programming and Problem Solving.”
A transcript of the first instance of the class is available [17].
As of summer 2015, the class has been offered fifteen times at
Columbia University. The first two authors took this course
as graduate students at Columbia University in Fall 2006
and Fall 2004, respectively. After joining the faculty at the
University of Pennsylvania they introduced this class there
in 2013 and as of this writing it has been offered five times.

A similar class, “Heuristic Problem Solving,” has been
taught at New York University since 2001. While writing
a book on great computer scientists [18], the fourth author
revisited some of the problems Knuth had used at Stanford.
Recognizing that students learn best when they do rather
than when they sit and allegedly listen, the Heuristic Problem
Solving course (taught for the 16th time in Fall 2015) is
structured around simple-to-state but hard-to-solve puzzles,
many drawn from the fourth author’s columns in Scientific
American and Dr. Dobb’s Journal.

3. COURSE DETAILS

In this section, we describe in detail the course’s goals and
educational objectives and the overall course structure.

3.1 Educational Objectives

Computer Science can be thought of as an algorithmic
problem-solving activity in which we create, implement, ana-
lyze, and communicate solutions. The main objective of this
course is to strengthen students’ abilities in these four areas,
specifically by having them do the following:

e Identify appropriate algorithms, data structures, etc.
to use in order to solve a problem.

e Apply programming skills as a means of implementing
an algorithmic solution.

e Develop intuition to enable students to come up with
creative approaches to problems.

Reuse and modify code.
Collaborate with other students on programming projects.
Develop skills for analyzing solutions.

Incorporate feedback from others in order to enhance
the quality of the solution.

e Improve communication skills (group discussion, writ-
ten, presentation, teamwork).

More formally, using Bloom’s taxonomy of educational
objectives [1], most CS courses focus on the lower two levels,
i.e., “knowledge” and “comprehension,” with partial coverage
of the third level, “application.” This course, on the other
hand, assumes that knowledge and comprehension have al-
ready been gained in a variety of CS classes. It thus focuses
primarily on the upper levels of the taxonomy, namely “anal-
ysis,” “synthesis,” and “evaluation.” Although capstone and
project courses often touch on these particular aspects, there
are few, if any, classes with these specific objectives in a
traditional CS curriculum.

3.2 Intended Audience

This course is appropriate for upper-level undergraduates
and graduate students, and serves as a capstone experience
for them in that it builds on what they have learned in

terms of algorithms, data structures, and programming and
requires them to apply those as “tools” in solving problems.

In terms of prerequisites, data structures, algorithms, and
at least two years of programming experience are required.
Upper-level courses like Artificial Intelligence and Machine
Learning are recommended.

3.3 Course Structure

There are no lectures in the course; rather, the course uses
the Problem-Based Learning [20] methodology throughout
the semester. The course consists of four cycles, each lasting
approximately three weeks. In each cycle, the instructor
first presents the problem to be solved. All the problems are
open-ended and there are no “correct” solutions. We describe
an example problem called “Organisms” in Section [{:1]

For each problem, the instructor provides a simulator that
implements the rules and logic and that allows students to
evaluate their solutions and/or compete against other teams’
implementations in a variety of configurations. Students
program to a given interface as part of their solution. The
students can thus focus on the implementation of their ap-
proach/algorithm and not worry about implementing the
details related to simulating the problem itself.

After the initial discussion of the problem, teams are
formed (details below) and students work with their groups
outside of class time. Subsequent class meetings consist of
discussions of the students’ insights into the problem and
the work they have done in their group. There are a series of
team “deliverables” due over the course of the problem cycle,
and each group demonstrates their progress to the rest of
the class in each class meeting.

At the end of the problem cycle, a tournament is held to
determine the “best” solution, by an agreed-upon definition
of “best,” for a variety of configurations according to the
problem. Although tournament results are not necessarily
related to the students’ grade, they are indicative of the
quality of the solution and serve as a motivating factor.

3.4 Class Size and Teams

Due to the nature of the course, class size is typically
limited to 25-30 students. Teams usually consist of three
or four students, thus resulting in six to eight teams overall.
For each problem cycle, new teams are created and group
membership necessarily changes. The constraint that we add
is that two students cannot work together more than once,
as long as feasible. This gives everyone an opportunity to
work with different people, leading to a greater diversity of
ideas and approaches.

3.5 Open Source Nature

What perhaps makes this class even more unique compared
to others typically offered in most CS departments is the
open source nature of the class. Teams are allowed (and
encouraged) to take ideas and even code from other teams,
as long as they are appropriately attributed and cited. This
allows for a freer exchange of ideas in the class discussions
and it is very common to have a team say: “We really liked
what team X proposed and since they were pursing another
approach, we decided to implement their idea this weekend.”

3.6 Communication and Presentation

An important pedagogical goal of this course is to improve
students’ communication and presentation skills in technical

subjects. Towards this end, at the end of each problem cycle,
every team submits a final report, which includes details of
the team’s solution, critical analysis of their approach, an
overview of the implementation, and analysis of the tourna-
ment results. Every team also does a short presentation in
the last class for each cycle.

3.7 Evaluation and Grades

For each problem, the grade is based on the students’
implementation and deliverables, including;:

e the novelty of the approach

the thoroughness of the report

the clarity of the report presentation

the quality of the code

the correctness and generality of the proposed solution

the efficiency of the proposed solution

A large part of the course grade is also based on class and
group participation. As such, class attendance is mandatory
and missing several classes will result in a significant drop
in the grade. Likewise, (for some of us), students evaluate
each other at the end of each cycle, and these evaluations
are used in calculating the final course grade.

4. SAMPLE PROBLEMS

One of the main contributions of this paper is to provide
a large repository of existing problems that can be used by
instructors at different institutions. There are three different
sets of problems maintained by authors at the three institu-
tions. There are over 85 problems available in total; for all
the problems, software support (code, simulators, and GUT)
is available either on request or directly through our website
at http:/ /programming-and-problem-solving.github.io/.

4.1 Organisms

We now describe an example problem called “Organisms.”
This problem has been used several times and is one of the
most popular as voted by the students. The description
below is the handout given to the class at the start of the
problem cycle.

Consider an electronic world consisting of an m by n grid.
Virtual “organisms” can exist on this grid, with an organism
able to occupy a cell on the grid. Organisms have energy
that can be gained or lost in a variety of ways. When an
organism runs out of energy it dies, and vacates the cell it
formerly occupied. An organism can have at most M units
of energy. An organism may do one of several things during
a virtual time cycle:

e Move one cell horizontally or vertically in any direction.
The world wraps, so that an organism traveling off the
right edge of the grid appears on the left edge, and
similarly for the top and bottom edges. A move uses
some energy.

e Stay put and do nothing. This move uses a small
amount of energy.

e Reproduce. An organism can split in two, placing a
replica of itself on an adjacent square. Each resultant
organism has slightly less than half of the initial energy
of the original organism since reproduction costs some
energy.

An illegal move (such as trying to move or reproduce onto
an occupied square) results in a “stay put” outcome.

There will be food scattered over the grid. One unit of food
corresponds to u units of energy. Food reproduces according
to the following rules:

e An empty square has a small probability p of having a
single unit of food “blow in.”

e For cells already containing food, but no organisms,
every food unit on a nonempty square has a small
probability ¢ of doubling. This doubling is independent
of other food units on the cell. So, a cell with three
units of food may have anywhere between three and
six units of food on the next cycle. Nevertheless, no
cell may have more than K units of food at any one
time, due to space constraints.

e Cells with organisms never obtain additional food. (The
organisms block the light.) In fact, an organism that
is on a cell with food, and which has energy no larger
than M — u, will consume a unit of food and add u
units of energy to its store. If an organism is hungry, it
can eat one unit of food per cycle until either the food
runs out, or it achieves energy greater than M — u.

An organism has an external state that is an integer be-
tween 0 and 255. This state may be changed by the organism
during the course of the simulation. The external state is
visible to other organisms, as described below.

An organism can “see” in the four orthogonal directions.
An organism gets information about:

e Whether there is food or not on a neighboring square
(but not how much food).

e Whether there is another organism on a neighboring
square. If there is, then the external state of the neigh-
boring organism is also available.

e The amount of remaining food on the organism’s cur-
rent cell.

e The amount of energy currently possessed by the or-
ganism.

e Values of the simulator parameters s (energy consumed
in staying put), v (energy consumed in moving or re-
producing), u, M, and K, but not p, ¢, m, or n.

An organism’s “brain” is a program that you will write.
Since there will be many organisms on the grid simultane-
ously, each will run a separate instance of the brain code.
Each instance will have access only to the local environment
of the organism. Organisms are placed randomly on the grid,
and don’t know their coordinates. The brain can keep a
history of local events for the organism if it’s useful.

Organisms cannot identify their neighbors. Neighbors may
be of the same species (i.e., have the same programmed brain),
or of a different species (i.e., have a different brain). This will
be important for simulations in which multiple organisms
from different groups are placed on the same grid. (How
might you use the external state to help in identification?
What about impostors?)

Organisms act one-at-a-time from top-left to bottom-right,
row by row. We number the top-left cell as (1,1) and the
bottom-right cell as (m,n). That means that the state of
the virtual world seen by an organism at (z,y) reflects the
situation in which all organisms in positions (z’,y’) lexico-
graphically less than (z,y) have already made their moves,

http://programming-and-problem-solving.github.io/

while organisms in positions lexicographically after (z,y)
have not yet moved. This convention allows all operations
to happen without any need for resolving conflicts between
organisms (for example trying to move to the same cell).
However, it leads to some slightly unintuitive effects:

e An organism that is sensed to the west is usually in
its final position for the cycle (can you think of an
exception?), while an organism sensed to the east may
or may not be in its final position.

e An organism moving east can be sensed from the west,
while an organism moving west cannot be sensed from
the east. (There’s an exception to this observation:
what is it?)

We’ll provide an organism “simulator” that reads in one
or more organism brains, places one organism for each such
brain randomly on the grid, and lets the organisms behave
according to their brains’ instructions.

There are several goals for this problem:

1. Your organism should be able to survive and replicate
in an environment where it is the only kind of organism
present. This may not be as easy as it sounds. Over-
population may lead to consumption of all the food. If
p is sufficiently small, extinction may ensue. The goal
is to achieve the highest long-term stable population.

2. Your organism will be tested in environments contain-
ing other organisms. The goal here is primarily to
survive, and secondarily to survive in higher numbers
than competing organisms. Can your organisms pop-
ulate the grid faster than their competitors? (Is that
even the right strategy given the possibility of every-
body going extinct?) How might you program your
organisms to “recognize” different organisms based on
their state and/or behavior? If you can distinguish
members of your species, how might you behave differ-
ently to members of another species? Your goal here
is not necessarily to obliterate other species, but to
maximize your fraction of the population.

3. In the discussion so far, we haven’t limited the size of
organisms’ brains. How might your programs change
if (to simulate an organism’s limited brain size) we
limited the complexity of the brain code? For example,
what if we eliminated all looping constructs (while, for,
etc.) from brains?

5. OUTCOMES

This course has been taught several times at the three
institutions: the first two authors have taught this course
five times over three years at University of Pennsylvania; the
third author has taught this course almost every year since
1999 at Columbia University; the fourth author has taught
this course thirteen times at New York University.

The student experience at all three institutions has been
overwhelmingly positive. Overall course quality scores range
between “Very Good” and “Excellent.” We now describe the
qualitative feedback from the various offerings of this course.
The feedback comes from a variety of sources including end
of semester wrap-up sessions, official university evaluations,
and email sent to the authors. The feedback is grouped into
the following categories:

Overall Course: This course has consistently been very
highly rated and has been very popular with students. Se-
lected comments include: “One of the best courses I've
taken.”; “I would not only recommend this to any CS student,
but would demand that they take it, even make it a core
course of the program.”; “It is the most unique course in the
department.”; “This is the best thing that happened to me
here. The course structure is great, the problems were well
chosen.”

Course Structure: The open-ended nature of the problems
was very appealing to students. Selected comments include:
“These open ended problems excited an interest and an en-
thusiasm that I’ve never seen in almost any other class.”;
“The open-ended nature of the problems really helped to
develop my skills of independent problem solving.”; “This
also changed my idea of how a course SHOULD be taught—
namely using competitions and open-ended projects as moti-
vating devices.”

Course Workload: Students felt that the course entailed
a lot of work but that it was worth the effort. Selected
comments include: “This is the hardest, best class I have
ever taken. It made me weep it was so hard, but I never
have learned more or had so much fun as in this class.”; “The
work was VERY heavy, but was reasonable considering the
nature of the class.”

Teamwork, Discussion, and Communication: Students
mentioned that a strong positive aspect of the course was the
emphasis on teamwork and presentation and communication
skills. Selected comments include: “The class discussions
really helped open me to new perspectives on the problems,
and the regular presentations helped develop my skill in
communicating technical matters.”; “The open discussions
in the bi-weekly classes definitely facilitates the evolution of
new ideas as students need not worry about their own plans
being copied by other teams — in fact one wishes that his or
her ideas are borrowed by the participants as credit will be
given to them.”; “It’s also a class where teamwork is key and
good communication is vital.”

Class Size: As class sizes are growing at most universities,
students found the small class size in this course to be a very
unique and beneficial aspect. Selected comments include:
“Having a small class is a wonderful thing.”; “The small class
size and that too of hand-picked students really made the
discussions to be of very high quality.”; “Having fewer people
in the class makes me more comfortable and gives me the
chance to speak my mind. Something I have not had in ANY

class up to this point.”

While there has been occasional negative feedback from
students, it almost always concerns being in a group with
a team member who was not willing to pull their weight.
Because groups switch after every problem cycle, nobody is
paired with the same partner more than once.

6. RELATED WORK

This course builds on and complements existing work on
flipped classrooms and active learning, project-based courses,
simulation-oriented games, and integrating soft skills in Com-

puter Science classes. We summarize the important related
work in this section.

Problem-Based Learning (PBL) and the inverted /flipped
classroom [14] have become popular pedagogical tools. In
PBL, appropriate problems are used to increase knowledge
and mastery of the material. Group learning is a key part of
PBL and the goal is not “only the acquisition of knowledge but
also several other desirable attributes, such as communication
skills, teamwork, problem solving, independent responsibility
for learning, sharing information, and respect for others” |20].
Using aspects of PBL, in the inverted/flipped classroom,
activities that traditionally happen in the classroom (such
as lectures) happen outside the classroom and vice-versa.
Students review slides before coming to class and class time
is used to review the material and practice problems. This
approach has been been used successfully in a variety of
CS classes. Lockwood and Essenstein [15] describe using
an inverted classroom to teach introductory programming.
Gehringer and Peddycord [7] use an inverted classroom to
teach computer architecture. Kurtz et al. [13] describe using
tablets for active learning in lectures. Our course leverages
and complements all of this prior work in that learning occurs
outside the classroom while students are working on their
solutions and class meeting time is focused on discussion.

Projects have been and are being used as a significant
component in many different courses. We describe only the
recent related work for sake of brevity. Krutz et al. [12]
use real-world open source projects for teaching software
testing. Szabo [19] describes using existing projects with real
bugs for teaching software maintenance. Bloomfield et al. [2]
describe a two-semester capstone project where students
develop software for local non-profit organizations. Whereas
the projects described in these related works are generally
based on implementing a particular specification, our course
and project structure (as described in Section [3) is different
in that the problems are open-ended and the emphasis is on
devising, analyzing, and communicating solutions, in addition
to implementing them.

There has been a lot of work in using simulation-oriented
games for teaching various aspects of CS. SimSE [16] uses
a game-based simulation environment for teaching software
process and software engineering. Wu’s Castle [5] is a game
to teach students basic programming constructs such as
loops and arrays. Gibson and Bell [8] have conducted a
large survey that evaluates games for teaching CS. Their
survey (and the references therein) lists games on a variety of
topics such as binary numbers, basic programming concepts,
graph algorithms, and network protocols. All these papers
focus on teaching a very specific CS aspect and are, by
definition, narrow in scope. Our course is designed to do
the opposite—it is intended as a broad upper level course
that builds on courses such programming, data structures,
algorithms, and software engineering and uses them as tools
in solving problems.

Finally, soft skills such as communication and teamwork
are becoming an increasingly important aspect for a Com-
puter Scientist [6] and are found to be “unfortunately lacking
in many new graduates” [11]. There has been some recent
work that aims to integrate soft skills in various CS classes.
Hoffman et al. [10] describe using “workplace scenarios” to
teach communication skills in various classes. Hazzan and
Har-Shai [9] draw the analogy between soft skills and soft
computer science concepts such as abstraction and propose

that both these can be learnt gradually by students over a
period of time. Burns et al. [3| describe their efforts on teach-
ing soft skills by having student teams partner with middle
school teacher teams to help the latter integrate computing
into their teaching and curriculum. Our course also aims to
improve students’ soft skills and is complementary to all of
these efforts.

7. RECOMMENDATIONS

We conclude this paper with recommendations for others
who might want to adopt this course.

7.1 Teaching the Class

The role of the instructor in this class is, paradoxically,
to avoid instructing. As discussion of a problem progresses,
the ideas should be coming from the students during (and
between) class discussions. The role of the instructor is to
structure the discussion so that progress can be made. Our
advice on the instructor’s role during class time is summarized
below.

e Have a structure for class discussions. There should
be an expectation that every student will be called
on at some point, even when their hand is not raised.
Discussions can be based upon results obtained since
the previous class, with the focus moving from group
to group. Or discussions can be open and broad, par-
ticularly in the first class for a problem cycle.

e Listen to a student present an idea, then highlight
any insights and restate them in a parsimonious way.
Sometimes ideas come up that could take the discussion
in a whole new direction. If the previous direction of
the discussion still has room for elaboration, put the
new idea aside and come back to it later. It’s easier to
have discussions in a depth first rather than breadth
first manner.

e If a student asks a question, pose the question to the
class rather than trying to answer it.

e Avoid trying to solve the problems ahead of time. That
way, the instructor won’t inadvertently push the dis-
cussion in a particular direction. The most inspiring
moments for an instructor happen when students come
up with good ideas that the instructor would never
have thought of.

e Be strict about participation. This means (a) elimi-
nating side conversations and prohibiting the use of
cell-phones and laptops during class discussions, and
(b) limiting the number of allowed absences to a very
small number.

Instructor preparation for a particular class hour is small,
and the instructor will improvise as the discussion follows an
unpredictable course. By improvising in this way, students
get to see a more natural “way of thinking” about CS. The
primary preparation effort for the class occurs before the
class starts, when selecting a set of problems for the term.

7.2 What makes a good problem?

We recommend trying to choose different types of problems
over the course of the semester if possible. Games are a good
because they seem to get students motivated by friendly com-
petition. If one chooses more than one game-type problem,

try to make them different (e.g., one two-player game and
another many-player game). We suggest choosing problems
that could have come from the real world, and are phrased
within the context of simulating a (somewhat abstracted)
real-world scenario. It’s important to choose problems that
have good visualizations, preferably interactive ones. A high
quality interface can give the students direct feedback about
the mechanics (and bugs) of their solutions, both in class
and outside of class. Other important considerations include
choosing/controlling the appropriate level of difficulty (using
several parameters such as board size or number of play-
ers), whether the problem (or a close variant of it) has been
solved before or extensively studied in the literature, and
reusing problems used in the past (or from our repository)
so that students can potentially have access to previous work
done and build on it. Finally like Knuth, we aim to choose
problems that are open-ended, and likely to be fun.

8. ACKNOWLEDGMENTS

The authors would like to thank their hard-working teach-
ing assistants, without whom the courses would not have
been nearly as successful.

9. REFERENCES

[1] B. S. Bloom. Tazonomy of Educational Objectives: The
Classification of Education Goals. Cognitive Domain.
Handbook 1. Longman, 1956.

[2] A. Bloomfield, M. Sherriff, and K. Williams. A service
learning practicum capstone. In Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education, SIGCSE 14, pages 265270, New York, NY,
USA, 2014. ACM.

[3] R. Burns, L. Pollock, and T. Harvey. Integrating hard
and soft skills: Software engineers serving middle school
teachers. In Proceedings of the 43rd ACM Technical
Symposium on Computer Science FEducation, SIGCSE
’12, pages 209-214, New York, NY, USA, 2012. ACM.

[4] M. J. Clancy and D. E. Knuth. A Programming and
Problem-Solving Seminar. Technical Report
stan-cs-77-606, Computer Science Department,
Stanford University, 1977. http://infolab.stanford.edu/
pub/cstr/reports/cs/tr/77/606/CS-TR-77-606.pdf|

[5] M. Eagle and T. Barnes. Experimental evaluation of an
educational game for improved learning in introductory
computing. SIGCSE Bull., 41:321-325, March 2009.

[6] H. A. Etlinger. A framework in which to teach
(technical) communication to computer science majors.
In Proceedings of the 37th SIGCSE Technical
Symposium on Computer Science FEducation, SIGCSE
’06, pages 122-126, New York, NY, USA, 2006. ACM.

[7] E. F. Gehringer and B. W. Peddycord, III. The
inverted-lecture model: A case study in computer
architecture. In Proceeding of the 44th ACM Technical
Symposium on Computer Science FEducation, SIGCSE
’13, pages 489-494, New York, NY, USA, 2013. ACM.

[8] B. Gibson and T. Bell. Evaluation of games for
teaching computer science. In Proceedings of the 8th
Workshop in Primary and Secondary Computing
FEducation, WiPSE ’13, pages 51-60, New York, NY,
USA, 2013. ACM.

[9] O. Hazzan and G. Har-Shai. Teaching computer science
soft skills as soft concepts. In Proceeding of the 44th

ACM Technical Symposium on Computer Science
Education, SIGCSE ’13, pages 59-64, New York, NY,
USA, 2013. ACM.

[10] M. E. Hoffman, P. V. Anderson, and M. Gustafsson.
Workplace scenarios to integrate communication skills
and content: A case study. In Proceedings of the 45th
ACM Technical Symposium on Computer Science
Education, SIGCSE ’14, pages 349-354, New York, NY,
USA, 2014. ACM.

[11] J. L. Kayfetz and K. C. Almeroth. Creating innovative
writing instruction for computer science graduate
students. In Frontiers in Education Conference, 2008.
FIE 2008. 38th Annual, pages TAF-1. IEEE, 2008.

[12] D. E. Krutz, S. A. Malachowsky, and T. Reichlmayr.
Using a real world project in a software testing course.
In Proceedings of the 45th ACM Technical Symposium
on Computer Science Education, SIGCSE 14, pages
49-54, New York, NY, USA, 2014. ACM.

[13] B. L. Kurtz, J. B. Fenwick, R. Tashakkori, A. Esmail,
and S. R. Tate. Active learning during lecture using
tablets. In Proceedings of the 45th ACM Technical
Symposium on Computer Science Fducation, SIGCSE
'14, pages 121-126, New York, NY, USA, 2014. ACM.

[14] M. J. Lage, G. J. Platt, and M. Treglia. Inverting the
classroom: A gateway to creating an inclusive learning
environment. The Journal of Economic Education,
31(1):30-43, 2000

[15] K. Lockwood and R. Esselstein. The inverted classroom
and the cs curriculum. In Proceeding of the 44th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’13, pages 113-118, New York, NY, USA,
2013. ACM.

[16] E. O. Navarro and A. van der Hoek. SimSE: an
educational simulation game for teaching the software
engineering process. In Proc. of the 9th annual SIGCSE
conf. on Innovation and technology in CS education,
ITiCSE ’04, pages 233-233, 2004.

[17] K. A. Ross and S. R. Shamoun. Programming and
Problem Solving: A Transcript of the Spring 1999
Class. Technical Report cucs-018-99, Department of
Computer Science, Columbia University, 1999.
http://www.cs.columbia.edu/ library /TR-repository/
reports/reports-1999/cucs-018-99.pdf.

[18] D. Shasha and C. Lazere. Out of Their Minds: The
Lives and Discoveries of 15 Great Computer Scientists.
Springer-Verlag, New York, August 1995.

[19] C. Szabo. Student projects are not throwaways:
Teaching practical software maintenance in a software
engineering course. In Proceedings of the 45th ACM
Technical Symposium on Computer Science Education,
SIGCSE ’14, pages 5560, New York, NY, USA, 2014.
ACM.

[20] D. F. Wood. Problem based learning. Bmyj,
326(7384):328-330, 2003.

[21] C. V. Wyk and D. E. Knuth. A Programming and
Problem-Solving Seminar. Technical Report
stan-cs-79-707, Computer Science Department,
Stanford University, 1979. http://infolab.stanford.edu/

pub/cstr/reports/cs/tr/79/707/CS-TR-79-707.pdfl

http://infolab.stanford.edu/pub/cstr/reports/cs/tr/77/606/CS-TR-77-606.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/77/606/CS-TR-77-606.pdf
http://www.cs.columbia.edu/~library/TR-repository/reports/reports-1999/cucs-018-99.pdf
http://www.cs.columbia.edu/~library/TR-repository/reports/reports-1999/cucs-018-99.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/79/707/CS-TR-79-707.pdf
http://infolab.stanford.edu/pub/cstr/reports/cs/tr/79/707/CS-TR-79-707.pdf

	Introduction
	History
	Course Details
	Educational Objectives
	Intended Audience
	Course Structure
	Class Size and Teams
	Open Source Nature
	Communication and Presentation
	Evaluation and Grades

	Sample Problems
	Organisms

	Outcomes
	Related Work
	Recommendations
	Teaching the Class
	What makes a good problem?

	Acknowledgments
	References

