A COURSE ON PROGRAMMING AND PROBLEM SOLVING

University of Pennsylvania **Columbia University** New York University

http://programming-and-problem-solving.github.io/

Swapneel Sheth, Chris Murphy, Ken Ross, Dennis Shasha

PROGRAMMING AND PROBLEM SOLVING

- Originally taught by Donald Knuth at Stanford in the 1970s
- Later taught by Ken Ross at Columbia since 1999
- Taught by Swapneel Sheth and Chris Murphy at Penn since 2013
- Taught by Dennis Shasha at NYU since 2001

- NO exams
- NO homework
- NO (expensive) textbooks
- NO lectures

3

- 4 open-ended projects
- No "correct" answers

4

WHAT IS COMPUTER SCIENCE?

Computer Science is an activity in which we create, implement, analyze, and **communicate** solutions to algorithmic problems

EDUCATIONAL OBJECTIVES

- Emphasize four aspects of problem solving:

 - Analyze the results (understand behavior)
 - incorporate feedback from others)

- Create/Think about an approach (develop intuition, identify algorithms, data structures)

- Implement a solution (programming, reuse and modify code, team collaboration)

- Communicate your solution to others (group discussion, written reports, presentation,

EDUCATIONAL OBJECTIVES (2)

- Using Bloom's taxonomy:
 - A lot of courses focus on "knowledge" and "comprehension"
 - This course focuses on "analysis," "synthesis," and "evaluation"
- Problem-Based Learning (PBL)

COURSE DETAILS

- Intended Audience
 - Upperclassmen and graduate students

 - Recommended: Machine Learning, Artificial Intelligence, etc. -
- Class Size and Teams
 - 20-30 students; teams of size 3-4
 - -

- Prerequisites: Data Structures, Algorithms, 2+ years of programming experience

New teams for each project; two students cannot work together more than once

- Course Structure
 - 4 projects, roughly 3 weeks each
 - Start: introduce problem; provide simulator, GUI, API; team formation
 - Students work with their groups outside of class time
 - demos; cooperative problem solving
 - End: Tournaments run by TA -

COURSE DETAILS (2)

- Subsequent Class Meetings: discuss students' insights and ideas; demonstrate progress;

- Open Source Nature
 - Steal other people's ideas/code!
 - But you must attribute/cite it
- Communication and Presentation
 - Final report containing details of solution, analysis of approach, overview of implementation, analysis of tournament results
 - 10 minute presentation in class

COURSE DETAILS (3)

- Evaluation and Grades
 - Novelty of Approach
 - Correctness, Generality, and Efficiency of the solution
 - Thoroughness and Clarity of report and presentation

- Class participation (attendance is mandatory!)
- Peer Evaluations

COURSE DETAILS (4)

PROBLEM I - PARALLEL SOCCER

PROBLEM 2 - ORGANISMS

PROBLEM 3 - GUNSLINGER

PROBLEM 4 - MOSQUITO

DEMO

OUTCOMES

- The class has been taught 35+ times across 3 institutions by the authors
- More details in the paper

WANTTO ADOPTTHIS COURSE?

- Recommendations and Advice
 - Teaching the class; What makes a good problem?
- Repository of Existing Problems available
 - Three different sets of problems maintained at the three institutions
 - 85+ problems available
 - For all problems code, GUI, simulators available

programming-and-problem-solving.github.io

